Impact of temperature on the arbuscular mycorrhizal (AM) symbiosis: growth responses of the host plant and its AM fungal partner.
نویسندگان
چکیده
The growth response of the hyphae of mycorrhizal fungi has been determined, both when plant and fungus together and when only the fungus was exposed to a temperature change. Two host plant species, Plantago lanceolata and Holcus lanatus, were grown separately in pots inoculated with the mycorrhizal fungus Glomus mosseae at 20/18 degrees C (day/night); half of the pots were then transferred to 12/10 degrees C. Plant and fungal growth were determined at six sequential destructive harvests. A second experiment investigated the direct effect of temperature on the length of the extra-radical mycelium (ERM) of three mycorrhizal fungal species. Growth boxes were divided in two equal compartments by a 20 micro m mesh, allowing only the ERM and not roots to grow into a fungal compartment, which was either heated (+8 degrees C) or kept at ambient temperature. ERM length (LERM) was determined on five sampling dates. Growth of H. lanatus was little affected by temperature, whereas growth of P. lanceolata increased with temperature, and both specific leaf area (SLA) and specific root length (SRL) increased independently of plant size. Percentage of colonized root (LRC) and LERM were positively correlated with temperature when in symbiosis with P. lanceolata, but differences in LRC were a function of plant biomass. Colonization was very low in H. lanatus roots and there was no significant temperature effect. In the fungal compartment LERM increased over time and was greatest for Glomus mosseae. Heating the fungal compartment significantly increased LERM in two of the three species but did not affect LRC. However, it significantly increased SRL of roots in the plant compartment, suggesting that the fungus plays a regulatory role in the growth dynamics of the symbiosis. These temperature responses have implications for modelling carbon dynamics under global climate change.
منابع مشابه
Improvement of Growth and Stimulation of Biosynthesis Pathway of Polyphenols in Melissa officinalis L. Colonized by Arbuscular Mycorrhizal
The increasing demand for medicinal plants has amplified the importance of the development of effective methods for enhancing the cultivation of these plants. The association of arbuscular mycorrhizal (AM) fungi with medicinal plants has been found to alter the level of secondary metabolites by affecting the plant metabolism. Lemon balm (Melissa officinalis L.), is an important medicinal plant ...
متن کاملPlant 9-lox oxylipin metabolism in response to arbuscular mycorrhiza.
The establishment of an Arbuscular Mycorrhizal symbiotic interaction (MA) is a successful strategy to substantially promote plant growth, development and fitness. Numerous studies have supported the hypothesis that plant hormones play an important role in the recognition and establishment of symbiosis. Particular attention has been devoted to jasmonic acid (JA) and its derivates, the jasmonates...
متن کاملHormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway
Arbuscular mycorrhizal (AM) symbioses are mutualistic associations between soil fungi and most vascular plants. The symbiosis significantly affects the host physiology in terms of nutrition and stress resistance. Despite the lack of host range specificity of the interaction, functional diversity between AM fungal species exists. The interaction is finely regulated according to plant and fungal ...
متن کاملCommon mycorrhizal networks and their effect on the bargaining power of the fungal partner in the arbuscular mycorrhizal symbiosis
Arbuscular mycorrhizal (AM) fungi form mutualistic interactions with the majority of land plants, including some of the most important crop species. The fungus takes up nutrients from the soil, and transfers these nutrients to the mycorrhizal interface in the root, where these nutrients are exchanged against carbon from the host. AM fungi form extensive hyphal networks in the soil and connect w...
متن کاملGibberellins interfere with symbiosis signaling and gene expression and alter colonization by arbuscular mycorrhizal fungi in Lotus japonicus.
Arbuscular mycorrhiza is a mutualistic plant-fungus interaction that confers great advantages for plant growth. Arbuscular mycorrhizal (AM) fungi enter the host root and form symbiotic structures that facilitate nutrient supplies between the symbionts. The gibberellins (GAs) are phytohormones known to inhibit AM fungal infection. However, our transcriptome analysis and phytohormone quantificati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of experimental botany
دوره 55 396 شماره
صفحات -
تاریخ انتشار 2004